ASK the Expert? Q: What are two toxic microbes difficult to control at healthcare facilities? A: Gram-negative bacteria in sterile pharmacy preparations (think of endotoxin); B: Legionella biofilms in potable water systems and cooling towers (think stagnate water in pipes). Q: What are significant USP 797 changes scheduled to take effect November 1, 2023 in sterile compounding. A: The new standard mandates ongoing training for lab personnel and increased environmental monitoring. Increased Glove Finger Sampling to validate sterile handling competency – Every 6 months for Cat 1 & 2 CSPs and every 3 months for Cat 3 CSPs. Increased Viable Air testing to establish a baseline, then every 6 months for Cat 1 & 2 and every 30 days for Cat 3 Beyond Use Dates (BUDs) Viable Air Testing should be done under dynamic conditions and during compounding at locations near the (DCA). Volume of 1000 L required. ## **Environment of Care (EOC)-Part 2** Facilities and Infection Control professionals should be aware of how to select the proper respirator. In July 2021, OSHA mandated protection under §1910.502-Healthcare to prevent worker COVID-19 infection. Remember, up to 50% of workers self-infect during de-garbing - most by either inhalation or dermal contact. The proper way to assign respiratory protection is the term *Maximum Use Concentration* (MUC). The MUC requires measurement of airborne toxic microbes or chemicals within treatment rooms (eg. AlIR) – a room air test required. You can calculate a world class Maximum Use Concentration (MUC) yourself using the Assigned Protection Factor (APF) from Table 1 below. Use the exposure limit of 10 microbes of viable M. tuberculosis. See pg. 8 link: $\underline{https://www.irsst.qc.ca/media/documents/pubirsst/rg-501.pdf}.$ An international method you can try is the algorithm from IRSST, Quebec, Canada** using the link below: https://www.irsst.qc.ca/bioaerosol/etape1.aspx **The Institut de recherche Robert-Sauvé en santé et en sécurité du travail (IRSST), est. Québec since 1980 | Table I: Assigned Protection Factors ⁵ | | | | |--|-----------------|-----------------|----------------------| | Type of Respirator ^{1, 2} | Quarter
mask | Half
mask | Full
facepiece | | Air-Purifying Respirator | 5 | 10 ³ | 50 | | 2. Powered Air-Purifying Respirator (PAPR) | _ | 50 | 1,000 | | 3. Supplied-Air Respirator (SAR) or Airline Respirator • Demand mode • Continuous flow mode • Pressure-demand or other positive-pressure mode | = | 10
50
50 | 50
1,000
1,000 | | 4. Self-Contained Breathing Apparatus (SCBA) • Demand mode • Pressure-demand or other positive-pressure mode (e.g., open/closed circuit) | = | 10 | 50
10,000 | Photo credit to EMSL Microbiology Laboratories, October 2022. Beyond Code Minimum – Aspergillus Nosocomial Culture & Vancomycin Resistant Bacteria.